Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.501
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 2748-2756, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629538

RESUMO

It is a new approach to identify legal or illegal use of morphine through information on municipal wastewater. However, the sources of morphine in wastewater are complex, and distinguishing the contribution of different sources has become a key issue. A total of 262 influent samples from 61 representative wastewater treatment plants in a typical city were collected from October 2022 to March 2023. The concentrations of morphine, codeine, thebaine, papaverine, noscapine, and monoacetylmorphine were analyzed in wastewater and poppy straws. Combined with the proportion of alkaloids in poppy straws, the source analysis of alkaloids in wastewater was analyzed using the ratio method and positive matrix factorization model (PMF). Only five alkaloids were detected in wastewater, and monoacetylmorphine, a metabolite of heroin, was not detected. The concentrations of morphine and codeine were significantly higher than those of noscapine, papaverine, and thebaine. By constructing the ratios of codeine/(morphine + codeine) and noscapine/(noscapine + codeine), the source of poppy straw could be qualitatively distinguished. The PMF results showed that three sources of morphine for medical use, poppy straw, and codeine contributed 44.9%, 43.7%, and 9.4%, respectively. The different sources varied in these months due to the COVID-19 and influenza A outbreaks, in which the use of drugs containing poppy straws and codeine was the main source, whereas the use of morphine analgesics remained relatively stable. Inventory analysis further demonstrated the reliability of the source contributions from the PMF model, and morphine was not abused in this city.


Assuntos
Alcaloides , Noscapina , Papaver , Morfina/análise , Águas Residuárias , Papaverina/análise , Tebaína/análise , Noscapina/análise , Reprodutibilidade dos Testes , Codeína/análise , Derivados da Morfina/análise , Alcaloides/análise
2.
Se Pu ; 42(4): 311-326, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566420

RESUMO

Ion chromatography (IC) is a novel high performance liquid chromatographic technique that is suitable for the separation and analysis of ionic substances in different matrix samples. Since 1975, it has been widely used in many fields, such as the environment, energy, food, and medicine. IC compensates for the separation limitations of traditional gas chromatography and high performance liquid chromatography and can realize the qualitative analysis and quantitative detection of strongly polar components. This chromatographic technique features not only simple operations but also rapid analysis. The sensors used in IC are characterized by high sensitivity and selectivity, and the technique can simultaneously separate and determine multiple components. Several advances in IC instrumentation and chromatographic theories have been developed in recent years. IC can analyze various types of samples, including ions, sugars, amino acids, and organic acids (bases). Chinese herbal medicines are typically characterized by highly complex chemical compositions and may contain carbohydrates, proteins, alkaloids, and other active components. They also contain toxic residues such as sulfur dioxide, which may be produced during the processing of medicinal materials. Therefore, the analysis and elucidation of the precise chemical constituents of Chinese herbal medicines present key problems that must be resolved in modern Chinese herbal medicine research. In this context, IC has become an important method for analyzing and identifying the complex components of Chinese herbal medicines because this method is suitable for detecting a single active ingredients among complex components. This paper introduces the different types and principles of IC as well as research progress in this technique. As the applications of IC-based methods in pharmaceutical science, cell biology, and microbiology increase, further development is necessary to expand the applications of this technique. The development of innovative techniques has enabled IC technologies to achieve higher analytical sensitivity, better selectivity, and wider application. The components of Chinese herbal medicines can be divided into endogenous and exogenous components according to their source: endogenous components include glycosides, amino acids, and organic acids, while exogenous components include toxic residues such as sulfur dioxide. Next, the applications of IC to the complex components of Chinese herbal medicines in recent decades are summarized. The most commonly used IC technologies and methods include ion exchange chromatography and conductivity detection. The advantages of IC for the analysis of alkaloids have been demonstrated. This method exhibits better characteristics than traditional analytical methods. However, the applications of IC for the speciation analysis of inorganic anions are limited. Moreover, few reports on the direct application of the technique for the determination of the main active substances in Chinese herbal medicines, including flavonoids, phenylpropanoids, and steroids, have been reported. Finally, this paper reviews new IC technologies and their application progress in Chinese herbal medicine, focusing on their prospects for the effective separation and analysis of complex components. In particular, we discuss the available sample (on-line) pretreatment technologies and explore possible technologies for the selective and efficient enrichment and separation of different components. Next, we assess innovative research on solid-phase materials that can improve the separation effect and analytical sensitivity of IC. We also describe the features of multidimensional chromatography, which combines the advantages of various chromatographic techniques. This review provides a theoretical reference for the further development of IC technology for the analysis of the complex chemical components of Chinese herbal medicines.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Dióxido de Enxofre/análise , Alcaloides/análise , Cromatografia Líquida de Alta Pressão , Íons , Medicina Tradicional Chinesa
3.
Food Chem Toxicol ; 186: 114589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467298

RESUMO

Tropane alkaloids (TA) are natural toxins found in certain plants, including cereals, of which atropine and scopolamine are the main species of concern due to their acute toxicity. This study aimed to determine the occurrence of TA in cereal foods and assess the potential health risks associated with their consumption in Korea. TA levels were analyzed in 80 raw and 71 processed cereal samples, which were distributed throughout Korea in 2021, using ultra-performance liquid chromatography-tandem mass spectrometry. At least one of the six TA species, namely atropine, scopolamine, pseudotropine, tropinone, scopine, and 6-hydroxytropinone, was detected in 10 out of the 151 samples at levels ranging from 0.12 to 88.10 µg kg-1. Dietary exposure (mean, 0.23 ng kg-1 bw day-1) to atropine and scopolamine in the Korean population was estimated to be low across all age groups. This is despite considering worst-case scenarios using the total concentrations of atropine and scopolamine in a millet sample, both of which were detected, and 95th percentile consumption for consumers of millet only. Both the hazard index and margin of exposure methods indicated that the current levels of TA exposure from millet consumption were unlikely to pose significant health risks to the Korean population.


Assuntos
Grão Comestível , Tropanos , Atropina , Grão Comestível/química , República da Coreia , Medição de Risco , Escopolamina/toxicidade , Tropanos/análise , Tropanos/química , Alcaloides/análise , Alcaloides/química
4.
Food Chem ; 447: 138743, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452535

RESUMO

Nitraria roborowskii Kom (NRK), with high economic and ecological value, is mainly distributed in the Qaidam Basin, China. However, research on its chemical components and bioactivities is still rare. In this study, its chemical constituents (52) including 10 ß-carboline alkaloids, nine cyclic peptides, three indole alkaloids, five pyrrole alkaloids, eight phenolic acids and 17 flavonoids were identified tentatively using UPLC-triple-TOF-MS/MS. Notablely, one new ß-carboline alkaloid and five new cyclic peptides were confirmed using MS/MS fragmentation pathways. In addition, experiments in vitro indicated that NRK-C had strong maltase and sucrase inhibitory activities (IC50 of 0.202 and 0.103 mg/mL, respectively). Polysaccharide tolerance experiments confirmed NRK-C (400 mg/kg) was associated with decreased postprandial blood glucose (PBG) in diabetic mice. These results suggested that NRK fruit might be used as a functional ingredient in food products.


Assuntos
Alcaloides , Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Camundongos , Animais , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , alfa-Glucosidases/análise , Frutas/química , Sacarase , Alcaloides/análise , Fenóis/análise , Carbolinas/análise , Peptídeos Cíclicos/análise , Medicamentos de Ervas Chinesas/análise
5.
J Food Sci ; 89(4): 1835-1864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407443

RESUMO

Despite long-standing uses in several food and medicine traditions, the full potential of the leguminous crop fenugreek (Trigonella foenum-graecum L.) remains to be realized in the modern diet. Not only its seeds, which are highly prized for their culinary and medicinal properties, but also its leaves and stems abound in phytochemicals with high nutritional and health promoting attributes. Fenugreek dual food-medicine applications and reported metabolic activities include hypoglycemic, antihyperlipidemic, antioxidative, anti-inflammatory, antiatherogenic, antihypertensive, anticarcinogenic, immunomodulatory, and antinociceptive effects, with potential organ-protective effects at the cardiovascular, digestive, hepatic, endocrine, and central nervous system levels. Effectiveness in alleviating certain inflammatory skin conditions and dysfunctions of the reproductive system was also suggested. As a food ingredient, fenugreek can enhance the sensory, nutritional, and nutraceutical qualities of a wide variety of foods. Its high nutritive density can assist with the design of dietary items that meet the demand for novelty, variety, and healthier foods. Its seeds provide essential protective nutrients and other bioactive compounds, notably galactomannans, flavonoids, coumarins, saponins, alkaloids, and essential oils, whose health benefits, alone or in conjunction with other bioactives, are only beginning to be tapped into in the food industries. This review summarizes the current state of evidence on fenugreek potential for functional food development, focusing on the nutrients and non-nutrient bioactive components of interest from a dietary perspective, and their applications for enhancing the functional and nutraceutical value of foods and beverages. New developments, safety, clinical evidence, presumed mechanisms of action, and future perspectives are discussed. HIGHLIGHTS: Fenugreek seeds and leaves have long-standing uses in the food-medicine continuum. Fenugreek phytochemicals exert broad-spectrum biological and pharmacological activities. They show high preventive and nutraceutical potential against common chronic diseases. Current evidence supports multiple mechanisms of action mediated by distinct bioactives. Opportunities for fenugreek-based functional foods and nutraceuticals are expanding.


Assuntos
Alcaloides , Trigonella , Humanos , Alimento Funcional , Trigonella/química , Extratos Vegetais/química , Alcaloides/análise , Antioxidantes/análise , Suplementos Nutricionais , Sementes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise
6.
Clin Toxicol (Phila) ; 62(1): 56-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38348840

RESUMO

INTRODUCTION: The death of Socrates in 399 BCE is described in Plato's dialogue, the Phaedo, written an unknown time afterwards from accounts by others. THE EVIDENCE: Socrates' death has almost always been attributed to his drinking an extract of poison hemlock, Conium maculatum, despite apparent discrepancies between the clinical features described in classical translations of the Phaedo and general clinical experience of poisoning with the toxic alkaloids it contains. EVALUATION: Recent acute philological analysis of the original Greek text has resolved many of the discrepancies by showing that the terms used in the classical translations were misinterpretations of the clinical signs described. It is also likely that the unpleasant clinical effects, such as vomiting, abdominal pain, diarrhoea and muscle fasciculation commonly described in modern reports of poison hemlock poisoning, were not mentioned to present the death of Socrates in a way consistent with his philosophical ideals and those of his pupil Plato. CONCLUSIONS: Seen in this way, the death of Socrates can be accepted as a limited case report of Conium maculatum poisoning. Even after reaching that conclusion, intriguing scientific questions remain about the toxicity of the coniine alkaloids and the mechanisms of their effects.


Assuntos
Alcaloides , Intoxicação por Plantas , Humanos , Alcaloides/análise , Conium , História Antiga , Intoxicação por Plantas/etiologia , Intoxicação por Plantas/diagnóstico
7.
Fitoterapia ; 174: 105843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301937

RESUMO

In this research, five new indolequinazoline alkaloids (1-5), along with six known indolequinazoline alkaloids (6-11) were obtained from the fruits of Tetradium ruticarpum. Their structures were elucidated through comprehensive spectroscopic data of 1D and 2D NMR, HRESIMS and ECD spectra. Additionally, all isolates were assayed for their SIRT1 inhibitory activities in vitro and compounds 2, 7, 10 and 11 exhibited activities with IC50 values ranged from 43.16 to 118.35 µM.


Assuntos
Alcaloides , Evodia , Evodia/química , Frutas/química , Estrutura Molecular , Alcaloides/análise , Espectroscopia de Ressonância Magnética
8.
Sci Rep ; 14(1): 5062, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424458

RESUMO

P. longum L., one of the most significant species of the genus Piperaceae, is most frequently employed in Indian-Ayurvedic and other traditional medicinal-systems for treating a variety of illnesses. The alkaloid piperine, is the key phytoconstituent of the plant, primarily responsible for its' pharmacological-impacts. The aim of the study is to analyse the intra-specific variation in piperine content among different chemotypes (PL1 to PL 30) and identify high piperine yielding chemotype (elite-chemotype) collected from 10 different geographical regions of West Bengal by validated HPTLC chromatography method. The study also focused on the pharmacological-screening to better understand the antioxidant activity of the methanol extracts of P. longum by DPPH and ABTS radical-scavenging activity and genotoxic activity by Allium cepa root tip assay. It was found that the P. longum fruit chemotypes contain high amount piperine (highest 16.362 mg/g in chemotype PL9) than the stem and leaf chemotypes. Both DPPH and ABTS antioxidant assays revealed that P. longum showed moderate radical-scavenging activity and the highest activity was found in PL9 (fruit) chemotype with IC50 values of 124.2 ± 0.97 and 104 ± 0.78 µg/ml respectively. The A. cepa root tip assay showed no such significant genotoxic-effect and change in mitotic-index. The quick, reproducible, and validated HPTLC approach offers a useful tool for determining quantitative variations of piperine among P. longum chemotypes from different geographical-regions and also according to the different tissues and choose elite genotypes with high piperine production for continued propagation and commercialization for the pharmaceutical sector. Additionally, the plant's in-vitro antioxidant property and lack of genotoxicity directly supports its' widespread and long history of use as a medicinal and culinary plant.


Assuntos
Alcaloides , Benzotiazóis , Piper , Piperidinas , Alcamidas Poli-Insaturadas , Ácidos Sulfônicos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Piper/química , Antioxidantes/farmacologia , Alcaloides/farmacologia , Alcaloides/análise , Benzodioxóis/farmacologia
9.
Molecules ; 29(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338327

RESUMO

Quinolizidine alkaloids (QAs) are toxic secondary metabolites of the Lupinus species, the presence of which limits the expansion of lupin beans consumption, despite their high protein content. Evaluation of the level of alkaloids in edible Lupinus species is crucial from a food safety point of view. However, quantitation of QAs is complicated by the fact that not all important alkaloids used for quantitation are commercially available. In this context, we developed a method for the simultaneous quantitation of eight major lupin alkaloids using quantitative NMR spectroscopy (qNMR). Quantitation and analysis were performed in 15 different seed extracts of 11 Lupinus spp. some of which belonged to the same species, with different geographical origins and time of harvest, as well as in all aerial parts of L. pilosus. The mature seeds of L. pilosus were found to be a uniquely rich source of multiflorine. Additionally, we developed a protocol using adsorption or ionic resins for easy, fast, and efficient debittering of the lupine seeds. The protocol was applied to L. albus, leading to a decrease of the time required for alkaloids removal as well as water consumption and to a method for QA isolation from the debittering wastewater.


Assuntos
Alcaloides , Lupinus , Alcaloides Quinolidizínicos , Lupinus/química , Alcaloides/análise , Sementes/química
10.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338336

RESUMO

Some South American countries have ancient traditions that may pose legal problems, such as the consumption of coca leaves, as this can provide positive results for cocaine use after the analysis of biological samples. For this reason, it is necessary to find specific markers that help differentiate legal from illegal consumption, such as tropacocaine, cinnamoylcocaine, and especially hygrine and cuscohygrine. In this work, two techniques for collecting biological samples are compared: the Quantisal® Oral Fluid collection device and passive drooling. Once the samples were collected, they were subjected to solid-phase extraction for subsequent injection into GC-MS. Different validation parameters included in international guides have been studied to evaluate whether the proposed method is valid for the defined purpose, placing special emphasis on the study of the matrix effect and little value on GC-MS analyses. With respect to this parameter, an increase in the signal was found for CUS and t-CIN, but it was not significant for the rest of the substances studied. The recoveries have varied significantly depending on the way of working, being higher when working with standardized areas. After carrying out work with the oral fluid samples collected from laboratory volunteers, the method was applied to two real samples. The results obtained support the need for further research to overcome certain limitations presented by the device.


Assuntos
Alcaloides , Coca , Cocaína , Humanos , Coca/química , Cromatografia Gasosa-Espectrometria de Massas , Alcaloides/análise , Folhas de Planta/química
11.
Molecules ; 29(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338442

RESUMO

(1) Background: The effect of Dendrobium nobile Lindl. (D. nobile) on hyperglycemic syndrome has only been recently known for several years. Materials of D. nobile were always collected from the plants cultivated in various growth ages. However, regarding the efficacy of D. nobile on hyperglycemic syndrome, it was still unknown as to which cultivation age would be selected. On the other hand, with the lack of quality markers, it is difficult to control the quality of D. nobile to treat hyperglycemic syndrome. (2) Methods: The effects of D. nobile cultivated at year 1 and year 3 were checked on alloxan-induced diabetic mice while their body weight, diet, water intake, and urinary output were monitored. Moreover, levels of glycosylated serum protein and insulin were measured using Elisa kits. The constituents of D. nobile were identified and analyzed by using UPLC-Q/trap. Quality markers were screened out by integrating the data from UPLC-Q/trap into a network pharmacology model. (3) Results: The D. nobile cultivated at both year 1 and year 3 showed a significant effect on hyperglycemic syndrome at the high dosage level; however, regarding the significant level, D. nobile from year 1 showed the better effect. In D. nobile, most of the metabolites were identified as alkaloids and sesquiterpene glycosides. Alkaloids, represented by dendrobine, were enriched in D. nobile from year 1, while sesquiterpene glycosides were enriched in D. nobile from year 3. Twenty one metabolites were differentially expressed between D. nobile from year 1 and year 3. The aforementioned 21 metabolites were enriched to 34 therapeutic targets directly related to diabetes. (4) Conclusions: Regarding the therapy for hyperglycemic syndrome, D. nobile cultivated at year 1 was more recommended than that at year 3. Alkaloids were recommended to be used as markers to control the quality of D. nobile for hyperglycemic syndrome treatment.


Assuntos
Alcaloides , Dendrobium , Diabetes Mellitus Experimental , Sesquiterpenos , Animais , Camundongos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Alcaloides/análise , Glicosídeos
12.
Chem Biodivers ; 21(3): e202302123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253808

RESUMO

Three previously undescribed compounds named rauvolphyllas A-C (1-3), along with thirteen known compounds, 18ß-hydroxy-3-epi-α-yohimbine (4), yohimbine (5), α-yohimbine (6), 17-epi-α-yohimbine (7), (E)-vallesiachotamine (8), (Z)-vallesiachotamine (9), 16S-E-isositsirikine (10), Nb -methylisoajimaline (11), Nb -methylajimaline (12), ajimaline (13), (+)-lyoniresinol 3α-O-ß-D-glucopyranoside (14), (+)-isolarisiresinol 3α-O-ß-D-glucopyranoside (15), and (-)-lyoniresinol 3α-O-ß-D-glucopyranoside (16) were isolated from the aerial parts of Rauvolfia tetraphylla L. Their chemical structures were elucidated based on the extensive spectroscopic interpretation of HR-ESI-MS, 1D and 2D NMR spectra. The absolute configurations of 2 and 3 were determined by experimental ECD spectra. Compounds 5, 6, 7, and 11-13 exhibited nitric oxide production inhibition activity in LPS-activated RAW 264.7 cells with the IC50 values of 79.10, 44.34, 51.28, 33.54, 37.67, and 28.56 µM, respectively, compared to that of the positive control, dexamethasone, which showed IC50 value of 13.66 µM. The other isolates were inactive with IC50 values over 100 µM.


Assuntos
Alcaloides , Anisóis , Lignanas , Naftalenos , Rauwolfia , Animais , Camundongos , Lignanas/química , Células RAW 264.7 , Lipopolissacarídeos/farmacologia , Óxido Nítrico , Alcaloides/análise , Espectroscopia de Ressonância Magnética , Componentes Aéreos da Planta/química , Ioimbina , Estrutura Molecular
13.
Mol Omics ; 20(3): 192-202, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38224158

RESUMO

Areca nut (Areca catechu L.) is commonly consumed as a chewing food in the Asian region. However, the investigations into the components of areca nut are limited. In this study, we have developed an approach that combines mass spectrometry with feature-based molecular network to explore the chemical characteristics of the areca nut. In comparison to the conventional method, this technique demonstrates a superior capability in annotating unknown compounds present in areca nut. We annotated a total of 52 compounds, including one potential previously unreported alkaloid, one carbohydrate, and one phenol and confirmed the presence of 7 of them by comparing with commercial standards. The validated method was used to evaluate chemical features of areca nut at different growth stages, annotating 25 compounds as potential biomarkers for distinguishing areca nut growth stages. Therefore, this approach offers a rapid and accurate method for the component analysis of areca nut.


Assuntos
Alcaloides , Areca , Areca/química , Nozes/química , Alcaloides/análise , Alcaloides/química , Espectrometria de Massas
14.
Ecotoxicol Environ Saf ; 271: 115940, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218103

RESUMO

Coptis chinensis Franch is a perennial herb from the Ranunculaceae family with a long history of medicinal use. As the medicinal part, the rhizome of coptis often accumulates excessive cadmium (Cd) even at low concentrations in the soil, which not only compromises its medicinal safety but also raises concerns about adverse effects on human health. Therefore, effective strategies are needed to mitigate this accumulation and ensure its safe use in traditional medicine. This study utilized transcriptome profiling and physiological analysis to explore molecular mechanisms associated with ecological significance and the active accumulation of Cd in C. chinensis. The response to Cd in C. chinensis was assessed through RNA sequencing, Cd determination and isoquinoline alkaloid measurement using its roots, stems, and leaves. The transcriptome revealed, a total of 2667, 2998, or 2815 up-regulated deferentially expressed genes in roots, stems or leaves in response to Cd exposure. Furthermore, we identified phenylpropanoid and isoquinoline alkaloid biosynthesis as the key pathways response to Cd exposure, which suggests that C. chinensis may improve its tolerance to Cd through regulating the phenylpropanoid biosynthesis pathway. Under Cd exposure, plant-pathogen interaction in leaves was identified as the key pathway, which indicates that upregulation of genes involved in plant-pathogen interaction could enhance disease resistance in C. chinensis. WGCNA analysis identified WRKY8 (Cluster-55763.31419) and WRKY47 (Cluster-55763.221590) as potential regulators of secondary metabolic synthesis and plant-pathogen interaction pathway in C. chinensis triggered by Cd. The measurement of berberine, coptisine, palmatine, and epiberberine also demonstrated that Cd simulated the four isoquinoline alkaloids in roots. Therefore, our study not only presented a transcriptome expression profiles that revealed significant upregulation of genes involved in metal transport and detoxification pathways but also suggested a possible mechanism to cope with Cd accumulation. This knowledge provides a new insight into gene manipulation for controlling Cd accumulation, enhancing resistance and promoting synthesis of secondary metabolites with potential medicinal properties in other medicinal plant species.


Assuntos
Alcaloides , Cádmio , Humanos , Cádmio/toxicidade , Coptis chinensis , Resistência à Doença , Alcaloides/análise , Perfilação da Expressão Gênica , Transcriptoma , Isoquinolinas
15.
Sci Total Environ ; 917: 170456, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296096

RESUMO

Cigarette nicotiana alkaloids associated with lung and cardiovascular diseases attack enormous attention. However, the mechanism at the molecular level between nicotiana alkaloids and phospholipid ozonolysis remains elusive. Herein, we investigated the interfacial ozonolysis of a hung droplet containing 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) intervened by nicotiana alkaloids (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK; rac-N'-nitrosonornicotine, NNN; nicotine; and (R,S)-N-nitrosoanasabine, NAT) and followed by on-line mass spectrometry analysis. NNK and NNN showed an acceleration on the interfacial ozonolysis, while nicotine and NAT inhibited this chemistry. Such acceleration/inhibition on POPG ozonolysis was positively correlated with nicotiana alkaloid concentrations. The reaction rate constants suggested that the ozonolysis of lung phospholipids exposed to cigarette smoke at the air-water interface occurred rapidly. A possible mechanism of the hydrophilic/oleophilic nature of nicotiana alkaloids mediating the packing density of POPG was proposed. NNK and NNN with a hydrophilic nature inserted into the POPG monolayer loosed the packing, but nicotine and NAT with an oleophilic nature let the POPG closely pack and shield the CC double bonds exposed to ozone (O3). These results gain the knowledge of nicotiana alkaloids mediated phospholipid ozonolysis at the molecule level and provide a method for online interfacial reaction studies associated with elevated indoor pollutants on public health.


Assuntos
Alcaloides , Nitrosaminas , Ozônio , Tabaco , Nicotina , Fosfolipídeos , Água , Alcaloides/análise , Nitrosaminas/análise , Ozônio/química , Carcinógenos/análise
16.
Int J Biol Macromol ; 259(Pt 2): 129229, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211913

RESUMO

The medicinal Dendrobium species of Orchidaceae possess significant pharmaceutical value, and modern pharmacological research has shown that Dendrobium contains many important active ingredients. Alkaloids, the crucial components of medicinal Dendrobium, demonstrate beneficial healing properties in cardiovascular, cataract, gastrointestinal, and respiratory diseases. Members of the cytochrome P450 monooxygenase (CYP) gene family play essential roles in alkaloid synthesis, participating in alkaloid terpene skeleton construction and subsequent modifications. Although studies of the CYP family have been conducted in some species, genome-wide characterization and systematic analysis of the CYP family in medicinal Dendrobium remain underexplored. In this study, we identified CYP gene family members in the genomes of four medicinal Dendrobium species recorded in the Pharmacopoeia: D. nobile, D. chrysotoxum, D. catenatum, and D. huoshanense. Further, we analyzed the motif composition, gene replication events, and selection pressure of this family. Syntenic analysis revealed that members of the clan 710 were present on chromosome 18 in three medicinal Dendrobium species, except for D. nobile, indicating a loss of clan 710 occurring in D. nobile. We also conducted an initial screening of the CYP genes involved in alkaloid synthesis through transcriptome sequencing. Quantitative real-time reverse transcription PCR showed that the expression of DnoNew43 and DnoNew50, homologs of secologanin synthase involved in the alkaloid synthesis pathway, was significantly higher in the stems than in the leaves. This result coincided with the distribution of dendrobine content in Dendrobium stems and leaves, indicating that these two genes might be involved in the dendrobine synthesis pathway. Our results give insights into the CYP gene family evolution analysis in four medicinal Dendrobium species for the first time and identify two related genes that may be involved in alkaloid synthesis, providing a valuable resource for further investigations into alkaloid synthesis pathway in Dendrobium and other medicinal plants.


Assuntos
Alcaloides , Dendrobium , Dendrobium/genética , Alcaloides/genética , Alcaloides/análise , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Terpenos/metabolismo
17.
Fitoterapia ; 173: 105834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280683

RESUMO

The phytochemical investigation of the pericarps of Caesalpinia bonduc led to the isolation and identification of five new cassane-type alkaloids: caesalminines C - G (1-5) and six new diterpenoids: caesalbonducin K - P (6-11), along with seven known compounds (12-18). Compounds 1-5 were identified as a group of rare alkaloids possessing a tetracyclic cassane-type diterpenoid skeleton with a lactam D-ring instead of a typical furan or lactone moiety. The structures of 1-11 were elucidated on the basis of 1D and 2D NMR including HSQC, HMBC, COSY and NOESY, and other spectroscopic analyses. The cytotoxic activities of the isolated compounds were evaluated in the A431, A549 and U87MG cancer cell lines.


Assuntos
Alcaloides , Caesalpinia , Diterpenos , Caesalpinia/química , Estrutura Molecular , Alcaloides/análise , Espectroscopia de Ressonância Magnética , Diterpenos/química , Sementes/química
18.
Food Chem ; 438: 138010, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37983999

RESUMO

In recent years, the monitoring of tropane alkaloids, specifically hyoscyamine and scopolamine, in food has become a pressing concern. This is due to increasing reports of food contamination with these compounds worldwide, raising awareness about the potential risks associated with their consumption. A novel method is proposed here for the determination of the sum of (+)-hyoscyamine, (-)-hyoscyamine, and (-)-scopolamine in buckwheat-based matrices, using solid-liquid extraction at low temperature and quantification by bidimensional chromatography coupled to tandem mass spectrometry. The validated method presented a linear response in the concentration range of 2.5-15 µg kg-1 (r > 0.99). The precision and accuracy were in the ranges from 0.8 to 11.0 % and from 96 to 103 %, respectively. The limit of quantification (LOQ) was 2.5 µg kg-1. No contamination was found at levels above the LOQ in any of the 18 samples analyzed (buckwheat flour, grains, and gluten-free mix).


Assuntos
Alcaloides , Fagopyrum , Hiosciamina , Alcaloides/análise , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Farinha/análise , Brasil , Temperatura , Tropanos/química , Escopolamina/análise
19.
Environ Res ; 242: 117779, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029817

RESUMO

The present investigation looked into the various biomedical potentials of Andrographis paniculata shoot extracts. The results showed that the methanol extract (Met-E) of A. paniculata contains more phytochemicals than the acetone and petroleum ether extracts, including alkaloids, saponins, tannins, phenolics, flavonoids, glycosides, terpenoids, phytosterol, steroids, and protein. Accordingly, the Met-E alone showed considerable bactericidal activity (through agar well diffusion method) against the bacterial pathogens namely Shigella dysenteriae, Bacillus cereus, Salmonella typhi, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphlococcus aureus, E. coli, and B. subtilis. This bactericidal activity was found as dose dependent manner, since at 1000 µg ml concentration, the Met-E showed better antibacterial activity. Similarly, at increased concentration (1000 µg ml) it showed notable antidiabetic (α-amylase inhibition: 74.31% and α-glucosidase inhibition: 72.34%), antioxidant (DPPH: 78.24%), and anti-inflammatory (albumin denaturation inhibition: 79.84% and lipoxigenase inhibition: 69.4%) activities. The phytochemical profiling of Met-E was characterized by UV-visible spectrophotometer (UV-vis), Gas Chromatography-Mass Spectrometry (GC/MS), Fourier transform infrared (FTIR), and High Performance Liquid Chromatography (HPLC) analyses. The results showed the Met-E contain bioactive compounds such as gallic acid, epicatechin, catechin, naringin, vitexin-2-rhamnoside, taxifolin, kaempferol, hesperidin, myricetin, rutin, quercetin, phloretin, and ursolic acid compounds. While most of these substances have been recognised for their pharmacological application perspective, the biological properties of particular substances must be studied in the future using in-vivo strategies.


Assuntos
Alcaloides , Andrographis paniculata , Escherichia coli , Folhas de Planta , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/química , Alcaloides/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Antioxidantes/farmacologia , Antioxidantes/análise
20.
Mutagenesis ; 39(1): 32-42, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877816

RESUMO

The quinolizidine alkaloids matrine and its N-oxide oxymatrine occur in plants of the genus Sophora. Recently, matrine was sporadically detected in liquorice products. Morphological similarity of the liquorice plant Glycyrrhiza glabra with Sophora species and resulting confusion during harvesting may explain this contamination, but use of matrine as pesticide has also been reported. The detection of matrine in liquorice products raised concern as some studies suggested a genotoxic activity of matrine and oxymatrine. However, these studies are fraught with uncertainties, putting the reliability and robustness into question. Another issue was that Sophora root extracts were usually tested instead of pure matrine and oxymatrine. The aim of this work was therefore to determine whether matrine and oxymatrine have potential for causing gene mutations. In a first step and to support a weight-of-evidence analysis, in silico predictions were performed to improve the database using expert and statistical systems by VEGA, Leadscope (Instem®), and Nexus (Lhasa Limited). Unfortunately, the confidence levels of the predictions were insufficient to either identify or exclude a mutagenic potential. Thus, in order to obtain reliable results, the bacterial reverse mutation assay (Ames test) was carried out in accordance with OECD Test Guideline 471. The test set included the plate incorporation and the preincubation assay. It was performed with five different bacterial strains in the presence or absence of metabolic activation. Neither matrine nor oxymatrine induced a significant increase in the number of revertants under any of the selected experimental conditions. Overall, it can be concluded that matrine and oxymatrine are unlikely to have a gene mutation potential. Any positive findings with Sophora extracts in the Ames test may be related to other components. Notably, the results also indicated a need to extend the application domain of respective (Q)SAR tools to secondary plant metabolites.


Assuntos
Alcaloides , Sophora , Matrinas , Reprodutibilidade dos Testes , Alcaloides/toxicidade , Alcaloides/análise , Quinolizinas/toxicidade , Quinolizinas/análise , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...